dist <- dist_poisson_inverse_gaussian(mean = rep(0.1, 3), shape = c(0.4, 0.8, 1))
dist
#> <distribution[3]>
#> [1] PIG(0.1, 0.4) PIG(0.1, 0.8) PIG(0.1, 1)
mean(dist)
#> [1] 0.1 0.1 0.1
variance(dist)
#> [1] 0.10250 0.10125 0.10100
support(dist)
#> <support_region[3]>
#> [1] N0 N0 N0
generate(dist, 10)
#> [[1]]
#> [1] 0 0 0 0 1 0 2 0 0 1
#>
#> [[2]]
#> [1] 0 0 1 0 0 0 0 0 0 0
#>
#> [[3]]
#> [1] 0 0 0 0 0 0 0 0 0 0
#>
density(dist, 2)
#> [1] 0.005366518 0.004961863 0.004877069
density(dist, 2, log = TRUE)
#> [1] -5.227576 -5.305974 -5.323211
cdf(dist, 4)
#> [1] 0.9999994 0.9999998 0.9999998
quantile(dist, 0.7)
#> [1] 0 0 0