dist <- dist_pareto(shape = c(10, 3, 2, 1), scale = rep(1, 4))
dist
#> <distribution[4]>
#> [1] Pareto(10, 1) Pareto(3, 1) Pareto(2, 1) Pareto(1, 1)
mean(dist)
#> [1] 0.1111111 0.5000000 1.0000000 Inf
variance(dist)
#> [1] 0.0154321 0.7500000 Inf NaN
support(dist)
#> <support_region[4]>
#> [1] [0,Inf) [0,Inf) [0,Inf) [0,Inf)
generate(dist, 10)
#> [[1]]
#> [1] 0.400343108 0.003029568 0.225864566 0.082163917 0.015723783 0.215784485
#> [7] 0.305367180 0.058018923 0.324060994 0.032508376
#>
#> [[2]]
#> [1] 0.08561882 0.22910579 0.05264631 0.39930524 0.32780289 0.15803342
#> [7] 0.02069014 1.52826822 0.34004372 4.79233286
#>
#> [[3]]
#> [1] 0.1016630 0.2192296 0.2314797 0.7549016 2.1575456 0.4496284 1.1466961
#> [8] 0.8974818 8.3574446 0.2921184
#>
#> [[4]]
#> [1] 1.22365884 0.81218300 0.07966644 0.71522341 12.41482103 8.68628628
#> [7] 0.07661467 2.94459768 3.37349536 2.04396136
#>
density(dist, 2)
#> [1] 5.645029e-05 3.703704e-02 7.407407e-02 1.111111e-01
density(dist, 2, log = TRUE)
#> [1] -9.782150 -3.295837 -2.602690 -2.197225
cdf(dist, 4)
#> [1] 0.9999999 0.9920000 0.9600000 0.8000000
quantile(dist, 0.7)
#> [1] 0.1279449 0.4938016 0.8257419 2.3333333