The Pareto distribution is a power-law probability distribution commonly used in actuarial science to model loss severity and in economics to model income distributions and firm sizes.
dist_pareto(shape, scale)We recommend reading this documentation on pkgdown which renders math nicely. https://pkg.mitchelloharawild.com/distributional/reference/dist_pareto.html
In the following, let \(X\) be a Pareto random variable with parameters
shape = \(\alpha\) and scale = \(\theta\).
Support: \((0, \infty)\)
Mean: \(\frac{\theta}{\alpha - 1}\) for \(\alpha > 1\), undefined otherwise
Variance: \(\frac{\alpha\theta^2}{(\alpha - 1)^2(\alpha - 2)}\) for \(\alpha > 2\), undefined otherwise
Probability density function (p.d.f):
$$ f(x) = \frac{\alpha\theta^\alpha}{(x + \theta)^{\alpha + 1}} $$
for \(x > 0\), \(\alpha > 0\) and \(\theta > 0\).
Cumulative distribution function (c.d.f):
$$ F(x) = 1 - \left(\frac{\theta}{x + \theta}\right)^\alpha $$
for \(x > 0\).
Moment generating function (m.g.f):
Does not exist in closed form, but the \(k\)th raw moment \(E[X^k]\) exists for \(-1 < k < \alpha\).
There are many different definitions of the Pareto distribution in the literature; see Arnold (2015) or Kleiber and Kotz (2003). This implementation uses the Pareto distribution without a location parameter as described in actuar::Pareto.
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
dist <- dist_pareto(shape = c(10, 3, 2, 1), scale = rep(1, 4))
dist
#> <distribution[4]>
#> [1] Pareto(10, 1) Pareto(3, 1) Pareto(2, 1) Pareto(1, 1)
mean(dist)
#> [1] 0.1111111 0.5000000 1.0000000 Inf
variance(dist)
#> [1] 0.0154321 0.7500000 Inf NaN
support(dist)
#> <support_region[4]>
#> [1] [0,Inf) [0,Inf) [0,Inf) [0,Inf)
generate(dist, 10)
#> [[1]]
#> [1] 0.199464862 0.031031212 0.308510828 0.024651899 0.023364192 0.284767907
#> [7] 0.017036675 0.082886923 0.015911397 0.005019324
#>
#> [[2]]
#> [1] 0.28478584 0.53188276 0.06426553 0.09304199 0.41834164 0.89052386
#> [7] 0.43549444 0.01693421 0.46341002 0.94239762
#>
#> [[3]]
#> [1] 3.6882407 0.8170206 1.4097964 0.5915486 0.6534127 0.1652269 0.2499987
#> [8] 0.5233614 0.3877956 0.6965226
#>
#> [[4]]
#> [1] 0.14837171 1.71118770 2.34585484 0.65074012 0.46148555 0.42638059
#> [7] 0.08479179 0.32628692 1.13637539 0.25414272
#>
density(dist, 2)
#> [1] 5.645029e-05 3.703704e-02 7.407407e-02 1.111111e-01
density(dist, 2, log = TRUE)
#> [1] -9.782150 -3.295837 -2.602690 -2.197225
cdf(dist, 4)
#> [1] 0.9999999 0.9920000 0.9600000 0.8000000
quantile(dist, 0.7)
#> [1] 0.1279449 0.4938016 0.8257419 2.3333333