R/dist_multivariate_normal.R
dist_multivariate_normal.RdThe multivariate normal distribution is a generalization of the univariate normal distribution to higher dimensions. It is widely used in multivariate statistics and describes the joint distribution of multiple correlated continuous random variables.
dist_multivariate_normal(mu = 0, sigma = diag(1))We recommend reading this documentation on pkgdown which renders math nicely. https://pkg.mitchelloharawild.com/distributional/reference/dist_multivariate_normal.html
In the following, let \(\mathbf{X}\) be a \(k\)-dimensional multivariate
normal random variable with mean vector mu = \(\boldsymbol{\mu}\) and
variance-covariance matrix sigma = \(\boldsymbol{\Sigma}\).
Support: \(\mathbf{x} \in \mathbb{R}^k\)
Mean: \(\boldsymbol{\mu}\)
Variance-covariance matrix: \(\boldsymbol{\Sigma}\)
Probability density function (p.d.f):
$$ f(\mathbf{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right) $$
where \(|\boldsymbol{\Sigma}|\) is the determinant of \(\boldsymbol{\Sigma}\).
Cumulative distribution function (c.d.f):
$$ P(\mathbf{X} \le \mathbf{q}) = P(X_1 \le q_1, \ldots, X_k \le q_k) $$
The c.d.f. does not have a closed-form expression and is computed numerically.
Moment generating function (m.g.f):
$$ M(\mathbf{t}) = E(e^{\mathbf{t}^T \mathbf{X}}) = \exp\left(\mathbf{t}^T \boldsymbol{\mu} + \frac{1}{2}\mathbf{t}^T \boldsymbol{\Sigma} \mathbf{t}\right) $$
dist <- dist_multivariate_normal(mu = list(c(1,2)), sigma = list(matrix(c(4,2,2,3), ncol=2)))
dimnames(dist) <- c("x", "y")
dist
#> <distribution[1]>
#> [1] MVN[2]
mean(dist)
#> x y
#> [1,] 1 2
variance(dist)
#> x y
#> [1,] 4 3
support(dist)
#> <support_region[1]>
#> [1] R^2
generate(dist, 10)
#> [[1]]
#> x y
#> [1,] 2.5890439 3.5939243
#> [2,] 2.4802413 2.2973921
#> [3,] -0.6194837 1.9712223
#> [4,] 4.5637796 4.3904932
#> [5,] -0.7759594 -0.7793593
#> [6,] -2.2377047 1.3302668
#> [7,] 3.2063897 2.3456605
#> [8,] -1.7804529 1.7332559
#> [9,] 1.3969992 0.8448695
#> [10,] 1.9580538 1.4063092
#>
density(dist, cbind(2, 1))
#> [1] 0.02829422
density(dist, cbind(2, 1), log = TRUE)
#> [1] -3.565098
cdf(dist, 4)
#> [1] 0.8412602
quantile(dist, 0.7, kind = "equicoordinate")
#> x y
#> [1,] 3.188512 3.188512
quantile(dist, 0.7, kind = "marginal")
#> x y
#> [1,] 2.048801 2.908288