dist_missing(length = 1)We recommend reading this documentation on pkgdown which renders math nicely. https://pkg.mitchelloharawild.com/distributional/reference/dist_missing.html
The missing distribution represents the absence of distributional
information. It is used as a placeholder when distribution values are
not available or not applicable, similar to how NA is used for missing
scalar values.
Support: Undefined
Mean: \(\text{NA}\)
Variance: \(\text{NA}\)
Skewness: \(\text{NA}\)
Kurtosis: \(\text{NA}\)
Probability density function (p.d.f): Undefined
$$ f(x) = \text{NA} $$
Cumulative distribution function (c.d.f): Undefined
$$ F(t) = \text{NA} $$
Quantile function: Undefined
$$ Q(p) = \text{NA} $$
Moment generating function (m.g.f): Undefined
$$ E(e^{tX}) = \text{NA} $$
All statistical operations on missing distributions return NA values
of appropriate length, propagating the missingness through calculations.
dist <- dist_missing(3L)
dist
#> <distribution[3]>
#> [1] NA NA NA
mean(dist)
#> [1] NA NA NA
variance(dist)
#> [1] NA NA NA
generate(dist, 10)
#> [[1]]
#> [1] NA NA NA NA NA NA NA NA NA NA
#>
#> [[2]]
#> [1] NA NA NA NA NA NA NA NA NA NA
#>
#> [[3]]
#> [1] NA NA NA NA NA NA NA NA NA NA
#>
density(dist, 2)
#> [1] NA NA NA
density(dist, 2, log = TRUE)
#> [1] NA NA NA
cdf(dist, 4)
#> [1] NA NA NA
quantile(dist, 0.7)
#> [1] NA NA NA