The Gumbel distribution is a special case of the Generalized Extreme Value distribution, obtained when the GEV shape parameter \(\xi\) is equal to 0. It may be referred to as a type I extreme value distribution.
dist_gumbel(alpha, scale)
We recommend reading this documentation on https://pkg.mitchelloharawild.com/distributional/, where the math will render nicely.
In the following, let \(X\) be a Gumbel random variable with location
parameter mu
= \(\mu\), scale parameter sigma
= \(\sigma\).
Support: \(R\), the set of all real numbers.
Mean: \(\mu + \sigma\gamma\), where \(\gamma\) is Euler's constant, approximately equal to 0.57722.
Median: \(\mu - \sigma\ln(\ln 2)\).
Variance: \(\sigma^2 \pi^2 / 6\).
Probability density function (p.d.f):
$$f(x) = \sigma ^ {-1} \exp[-(x - \mu) / \sigma]% \exp\{-\exp[-(x - \mu) / \sigma] \}$$ for \(x\) in \(R\), the set of all real numbers.
Cumulative distribution function (c.d.f):
In the \(\xi = 0\) (Gumbel) special case $$F(x) = \exp\{-\exp[-(x - \mu) / \sigma] \}$$ for \(x\) in \(R\), the set of all real numbers.
dist <- dist_gumbel(alpha = c(0.5, 1, 1.5, 3), scale = c(2, 2, 3, 4))
dist
#> <distribution[4]>
#> [1] Gumbel(0.5, 2) Gumbel(1, 2) Gumbel(1.5, 3) Gumbel(3, 4)
mean(dist)
#> [1] 1.654431 2.154431 3.231647 5.308863
variance(dist)
#> [1] 6.579736 6.579736 14.804407 26.318945
skewness(dist)
#> [1] 1.139547 1.139547 1.139547 1.139547
kurtosis(dist)
#> [1] 2.4 2.4 2.4 2.4
support(dist)
#> <support_region[4]>
#> [1] R R R R
generate(dist, 10)
#> [[1]]
#> [1] -1.8061146 9.6045238 -0.6696276 -0.2610720 1.5117307 2.8049826
#> [7] 2.8807408 -0.5473662 0.8243930 3.0807372
#>
#> [[2]]
#> [1] 1.5718871 0.5726492 3.8677119 5.9692654 1.2540717 2.5478451
#> [7] 0.2436495 -1.4007318 2.7968322 0.1055007
#>
#> [[3]]
#> [1] 3.3579583 -0.2585148 -1.4419297 7.3497240 4.5801018 -1.2591714
#> [7] 3.1824212 0.2875095 -0.2553291 -0.5373263
#>
#> [[4]]
#> [1] 2.5338757 0.5675519 11.4054492 7.5807278 7.5514069 -4.0137240
#> [7] 21.3646841 7.4815507 3.2350890 4.2665746
#>
density(dist, 2)
#> [1] 0.14726616 0.16535215 0.12102469 0.08889319
density(dist, 2, log = TRUE)
#> [1] -1.915514 -1.799678 -2.111761 -2.420320
cdf(dist, 4)
#> [1] 0.8404869 0.8000107 0.6475248 0.4589561
quantile(dist, 0.7)
#> [1] 2.561861 3.061861 4.592791 7.123722