The Gumbel distribution is a special case of the Generalized Extreme Value distribution, obtained when the GEV shape parameter \(\xi\) is equal to 0. It may be referred to as a type I extreme value distribution.
dist_gumbel(alpha, scale)We recommend reading this documentation on pkgdown which renders math nicely. https://pkg.mitchelloharawild.com/distributional/reference/dist_gumbel.html
In the following, let \(X\) be a Gumbel random variable with location
parameter alpha = \(\alpha\) and scale parameter scale = \(\sigma\).
Support: \(R\), the set of all real numbers.
Mean:
$$ E(X) = \alpha + \sigma\gamma $$
where \(\gamma\) is the Euler-Mascheroni constant, approximately equal to 0.5772157.
Variance:
$$ \textrm{Var}(X) = \frac{\pi^2 \sigma^2}{6} $$
Skewness:
$$ \textrm{Skew}(X) = \frac{12\sqrt{6}\zeta(3)}{\pi^3} \approx 1.1395 $$
where \(\zeta(3)\) is Apery's constant, approximately equal to 1.2020569. Note that skewness is independent of the distribution parameters.
Kurtosis (excess):
$$ \textrm{Kurt}(X) = \frac{12}{5} = 2.4 $$
Note that excess kurtosis is independent of the distribution parameters.
Median:
$$ \textrm{Median}(X) = \alpha - \sigma\ln(\ln 2) $$
Probability density function (p.d.f):
$$ f(x) = \frac{1}{\sigma} \exp\left[-\frac{x - \alpha}{\sigma}\right] \exp\left\{-\exp\left[-\frac{x - \alpha}{\sigma}\right]\right\} $$
for \(x\) in \(R\), the set of all real numbers.
Cumulative distribution function (c.d.f):
$$ F(x) = \exp\left\{-\exp\left[-\frac{x - \alpha}{\sigma}\right]\right\} $$
for \(x\) in \(R\), the set of all real numbers.
Quantile function (inverse c.d.f):
$$ F^{-1}(p) = \alpha - \sigma \ln(-\ln p) $$
for \(p\) in (0, 1).
Moment generating function (m.g.f):
$$ E(e^{tX}) = \Gamma(1 - \sigma t) e^{\alpha t} $$
for \(\sigma t < 1\), where \(\Gamma\) is the gamma function.
dist <- dist_gumbel(alpha = c(0.5, 1, 1.5, 3), scale = c(2, 2, 3, 4))
dist
#> <distribution[4]>
#> [1] Gumbel(0.5, 2) Gumbel(1, 2) Gumbel(1.5, 3) Gumbel(3, 4)
mean(dist)
#> [1] 1.654431 2.154431 3.231647 5.308863
variance(dist)
#> [1] 6.579736 6.579736 14.804407 26.318945
skewness(dist)
#> [1] 1.139547 1.139547 1.139547 1.139547
kurtosis(dist)
#> [1] 2.4 2.4 2.4 2.4
support(dist)
#> <support_region[4]>
#> [1] R R R R
generate(dist, 10)
#> [[1]]
#> [1] 0.41889426 -0.33196998 0.30320168 -0.02307647 6.80543721 2.54901883
#> [7] 0.12571773 3.96614323 1.21625715 1.43533491
#>
#> [[2]]
#> [1] 3.4955069 -0.5627131 2.5642517 3.1329347 1.8938184 3.1516692
#> [7] 3.4493220 1.4966659 1.8503559 3.8646221
#>
#> [[3]]
#> [1] 2.6477044 0.9863052 -0.7162495 2.3457499 0.4453724 4.3364459
#> [7] -0.1407257 3.9195029 2.5251400 8.4871423
#>
#> [[4]]
#> [1] 1.6612332 4.5940818 3.4847620 2.2096418 1.0569414 12.0380034
#> [7] 7.7679624 3.8375724 0.9458804 7.5231271
#>
density(dist, 2)
#> [1] 0.14726616 0.16535215 0.12102469 0.08889319
density(dist, 2, log = TRUE)
#> [1] -1.915514 -1.799678 -2.111761 -2.420320
cdf(dist, 4)
#> [1] 0.8404869 0.8000107 0.6475248 0.4589561
quantile(dist, 0.7)
#> [1] 2.561861 3.061861 4.592791 7.123722