The GEV distribution is widely used in extreme value theory to model the distribution of maxima (or minima) of samples. The parametric form encompasses the Gumbel, Frechet, and reverse Weibull distributions.
dist_gev(location, scale, shape)the location parameter \(\mu\) of the GEV distribution.
the scale parameter \(\sigma\) of the GEV distribution. Must be strictly positive.
the shape parameter \(\xi\) of the GEV distribution. Determines the tail behavior: \(\xi = 0\) gives Gumbel, \(\xi > 0\) gives Frechet, \(\xi < 0\) gives reverse Weibull.
We recommend reading this documentation on pkgdown which renders math nicely. https://pkg.mitchelloharawild.com/distributional/reference/dist_gev.html
In the following, let \(X\) be a GEV random variable with parameters
location = \(\mu\), scale = \(\sigma\), and shape = \(\xi\).
Support:
\(x \in \mathbb{R}\) (all real numbers) if \(\xi = 0\)
\(x \geq \mu - \sigma/\xi\) if \(\xi > 0\)
\(x \leq \mu - \sigma/\xi\) if \(\xi < 0\)
Mean: $$ E(X) = \begin{cases} \mu + \sigma \gamma & \text{if } \xi = 0 \\ \mu + \sigma \frac{\Gamma(1-\xi) - 1}{\xi} & \text{if } \xi < 1 \\ \infty & \text{if } \xi \geq 1 \end{cases} $$ where \(\gamma \approx 0.5772\) is the Euler-Mascheroni constant and \(\Gamma(\cdot)\) is the gamma function.
Median: $$ \text{Median}(X) = \begin{cases} \mu - \sigma \log(\log 2) & \text{if } \xi = 0 \\ \mu + \sigma \frac{(\log 2)^{-\xi} - 1}{\xi} & \text{if } \xi \neq 0 \end{cases} $$
Variance: $$ \text{Var}(X) = \begin{cases} \frac{\pi^2 \sigma^2}{6} & \text{if } \xi = 0 \\ \frac{\sigma^2}{\xi^2} [\Gamma(1-2\xi) - \Gamma(1-\xi)^2] & \text{if } \xi < 0.5 \\ \infty & \text{if } \xi \geq 0.5 \end{cases} $$
Probability density function (p.d.f):
For \(\xi = 0\) (Gumbel): $$ f(x) = \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma}\right) \exp\left[-\exp\left(-\frac{x-\mu}{\sigma}\right)\right] $$
For \(\xi \neq 0\): $$ f(x) = \frac{1}{\sigma} \left[1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi-1} \exp\left\{-\left[1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\} $$ where \(1 + \xi(x-\mu)/\sigma > 0\).
Cumulative distribution function (c.d.f):
For \(\xi = 0\) (Gumbel): $$ F(x) = \exp\left[-\exp\left(-\frac{x-\mu}{\sigma}\right)\right] $$
For \(\xi \neq 0\): $$ F(x) = \exp\left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\} $$ where \(1 + \xi(x-\mu)/\sigma > 0\).
Quantile function:
For \(\xi = 0\) (Gumbel): $$ Q(p) = \mu - \sigma \log(-\log p) $$
For \(\xi \neq 0\): $$ Q(p) = \mu + \frac{\sigma}{\xi}\left[(-\log p)^{-\xi} - 1\right] $$
Jenkinson, A. F. (1955) The frequency distribution of the annual maximum (or minimum) of meteorological elements. Quart. J. R. Met. Soc., 81, 158–171.
# Create GEV distributions with different shape parameters
# Gumbel distribution (shape = 0)
gumbel <- dist_gev(location = 0, scale = 1, shape = 0)
# Frechet distribution (shape > 0, heavy-tailed)
frechet <- dist_gev(location = 0, scale = 1, shape = 0.3)
# Reverse Weibull distribution (shape < 0, bounded above)
weibull <- dist_gev(location = 0, scale = 1, shape = -0.2)
dist <- c(gumbel, frechet, weibull)
dist
#> <distribution[3]>
#> [1] GEV(0, 1, 0) GEV(0, 1, 0.3) GEV(0, 1, -0.2)
# Statistical properties
mean(dist)
#> [1] 0.5772157 0.9935178 0.4091563
median(dist)
#> [1] 0.3665129 0.3874219 0.3534020
variance(dist)
#> [1] 1.644934 5.924577 1.105749
# Generate random samples
generate(dist, 10)
#> [[1]]
#> [1] 0.5058653 1.1524913 1.1903704 -0.5236831 0.1621965 1.2903686
#> [7] 0.2859436 -0.2136754 1.4338559 2.4846327
#>
#> [[2]]
#> [1] 0.1294876 0.8711422 -0.3575116 -1.0080009 1.0311405 -0.4185430
#> [7] 0.6805879 -0.5375249 -0.8495577 2.6498048
#>
#> [[3]]
#> [1] 0.9281486 -1.0097471 0.5305002 -0.4209475 -0.6207204 -0.7273885
#> [7] -0.1178996 -0.6466380 1.7156609 1.0235020
#>
# Evaluate density
density(dist, 2)
#> [1] 0.1182050 0.1058831 0.1199042
density(dist, 2, log = TRUE)
#> [1] -2.135335 -2.245420 -2.121062
# Evaluate cumulative distribution
cdf(dist, 4)
#> [1] 0.9818511 0.9303365 0.9996801
# Calculate quantiles
quantile(dist, 0.95)
#> [1] 2.970195 4.792363 2.239536