Several important distributions are special cases of the Gamma
distribution. When the shape parameter is 1, the Gamma is an
exponential distribution with parameter \(1/\beta\). When the
\(shape = n/2\) and \(rate = 1/2\), the Gamma is a equivalent to
a chi squared distribution with n degrees of freedom. Moreover, if
we have \(X_1\) is \(Gamma(\alpha_1, \beta)\) and
\(X_2\) is \(Gamma(\alpha_2, \beta)\), a function of these two variables
of the form \(\frac{X_1}{X_1 + X_2}\) \(Beta(\alpha_1, \alpha_2)\).
This last property frequently appears in another distributions, and it
has extensively been used in multivariate methods. More about the Gamma
distribution will be added soon.
dist_gamma(shape, rate = 1/scale, scale = 1/rate)We recommend reading this documentation on pkgdown which renders math nicely. https://pkg.mitchelloharawild.com/distributional/reference/dist_gamma.html
In the following, let \(X\) be a Gamma random variable
with parameters
shape = \(\alpha\) and
rate = \(\beta\).
Support: \(x \in (0, \infty)\)
Mean: \(\frac{\alpha}{\beta}\)
Variance: \(\frac{\alpha}{\beta^2}\)
Probability density function (p.m.f):
$$ f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} $$
Cumulative distribution function (c.d.f):
$$ f(x) = \frac{\Gamma(\alpha, \beta x)}{\Gamma{\alpha}} $$
Moment generating function (m.g.f):
$$ E(e^{tX}) = \Big(\frac{\beta}{ \beta - t}\Big)^{\alpha}, \thinspace t < \beta $$
dist <- dist_gamma(shape = c(1,2,3,5,9,7.5,0.5), rate = c(0.5,0.5,0.5,1,2,1,1))
dist
#> <distribution[7]>
#> [1] Γ(1, 0.5) Γ(2, 0.5) Γ(3, 0.5) Γ(5, 1) Γ(9, 2) Γ(7.5, 1) Γ(0.5, 1)
mean(dist)
#> [1] 2.0 4.0 6.0 5.0 4.5 7.5 0.5
variance(dist)
#> [1] 4.00 8.00 12.00 5.00 2.25 7.50 0.50
skewness(dist)
#> [1] 2.0000000 1.4142136 1.1547005 0.8944272 0.6666667 0.7302967 2.8284271
kurtosis(dist)
#> [1] 6.0000000 3.0000000 2.0000000 1.2000000 0.6666667 0.8000000 12.0000000
generate(dist, 10)
#> [[1]]
#> [1] 0.94448290 1.16788851 0.19099072 3.27286527 0.01536563 3.00866218
#> [7] 0.46505369 0.73911704 0.46497507 1.11581299
#>
#> [[2]]
#> [1] 0.7088386 3.9704497 7.3330652 1.2519780 4.4991009 4.4975226 1.6019558
#> [8] 4.5599795 1.8140502 1.3896288
#>
#> [[3]]
#> [1] 6.316528 8.275151 9.521868 9.428109 2.194702 7.129521 3.237007 9.837764
#> [9] 4.225715 4.738433
#>
#> [[4]]
#> [1] 2.526915 4.052192 4.999339 5.915749 4.746961 8.248155 3.364596 2.705230
#> [9] 7.447256 3.611930
#>
#> [[5]]
#> [1] 3.156328 2.536666 6.980342 3.363181 7.038153 4.264674 6.575509 4.649641
#> [9] 4.859170 3.107934
#>
#> [[6]]
#> [1] 5.269189 5.786172 4.954809 4.815212 5.422151 9.771682 6.630607 4.834448
#> [9] 6.320563 5.675854
#>
#> [[7]]
#> [1] 1.9382686504 0.1724916789 0.1175260944 1.6516119584 0.4508443426
#> [6] 0.8087757069 0.7064180776 0.0006658913 0.0049007131 0.2980294873
#>
density(dist, 2)
#> [1] 0.183939721 0.183939721 0.091969860 0.090223522 0.059540363 0.006545958
#> [7] 0.053990967
density(dist, 2, log = TRUE)
#> [1] -1.693147 -1.693147 -2.386294 -2.405465 -2.821101 -5.028908 -2.918939
cdf(dist, 4)
#> [1] 0.8646647 0.5939942 0.3233236 0.3711631 0.4074527 0.0762173 0.9953223
quantile(dist, 0.7)
#> [1] 2.4079456 4.8784330 7.2311353 5.8903613 5.1503385 8.6608472 0.5370971