dist_f(df1, df2, ncp = NULL)
We recommend reading this documentation on https://pkg.mitchelloharawild.com/distributional/, where the math will render nicely.
In the following, let \(X\) be a Gamma random variable
with parameters
shape
= \(\alpha\) and
rate
= \(\beta\).
Support: \(x \in (0, \infty)\)
Mean: \(\frac{\alpha}{\beta}\)
Variance: \(\frac{\alpha}{\beta^2}\)
Probability density function (p.m.f):
$$ f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} $$
Cumulative distribution function (c.d.f):
$$ f(x) = \frac{\Gamma(\alpha, \beta x)}{\Gamma{\alpha}} $$
Moment generating function (m.g.f):
$$ E(e^{tX}) = \Big(\frac{\beta}{ \beta - t}\Big)^{\alpha}, \thinspace t < \beta $$
stats::FDist
dist <- dist_f(df1 = c(1,2,5,10,100), df2 = c(1,1,2,1,100))
dist
#> <distribution[5]>
#> [1] F(1, 1) F(2, 1) F(5, 2) F(10, 1) F(100, 100)
mean(dist)
#> [1] NA NA NA NA 1.020408
variance(dist)
#> [1] NA NA NA NA 0.04295085
skewness(dist)
#> [1] NA NA NA NA 0.6243619
kurtosis(dist)
#> [1] NA NA NA NA 0.7278883
generate(dist, 10)
#> [[1]]
#> [1] 0.4720441 0.4743386 0.3134471 57.1365590 0.3697037 719.9992235
#> [7] 5.0063191 61.4585702 44.1580144 0.1464838
#>
#> [[2]]
#> [1] 7.84614676 73.11269824 0.93533527 1.93899119 6.04336713 0.13892610
#> [7] 26.09388299 1.52559361 0.02756035 1.56496578
#>
#> [[3]]
#> [1] 0.7020620 0.1981885 0.7426476 5.7114292 1.5658225 1.5903515 1.1549140
#> [8] 0.7291385 0.1854272 0.7424301
#>
#> [[4]]
#> [1] 9.5110842 0.8700710 0.6470577 0.4298532 3.1571969 228.2107278
#> [7] 1.6611376 0.7313240 6.7604009 1.4627553
#>
#> [[5]]
#> [1] 1.2019521 0.8593970 1.0294035 0.7412580 0.8228456 0.8554432 1.0361816
#> [8] 0.7624432 0.8513167 0.9087091
#>
density(dist, 2)
#> [1] 0.075026360 0.089442719 0.132070447 0.105192421 0.002755106
density(dist, 2, log = TRUE)
#> [1] -2.589916 -2.414157 -2.024420 -2.251964 -5.894300
cdf(dist, 4)
#> [1] 0.7048328 0.6666667 0.7879856 0.6278936 1.0000000
quantile(dist, 0.7)
#> [1] 3.851840 5.055556 2.608427 6.357893 1.110896