The degenerate distribution takes a single value which is certain to be observed. It takes a single parameter, which is the value that is observed by the distribution.
dist_degenerate(x)We recommend reading this documentation on pkgdown which renders math nicely. https://pkg.mitchelloharawild.com/distributional/reference/dist_degenerate.html
In the following, let \(X\) be a degenerate random variable with value
x = \(k_0\).
Support: \(\{k_0\}\), a single point
Mean: \(\mu = k_0\)
Variance: \(\sigma^2 = 0\)
Probability density function (p.d.f):
$$ f(x) = 1 \textrm{ for } x = k_0 $$ $$ f(x) = 0 \textrm{ for } x \neq k_0 $$
Cumulative distribution function (c.d.f):
$$ F(t) = 0 \textrm{ for } t < k_0 $$ $$ F(t) = 1 \textrm{ for } t \ge k_0 $$
Moment generating function (m.g.f):
$$ E(e^{tX}) = e^{k_0 t} $$
Skewness: Undefined (NA)
Excess Kurtosis: Undefined (NA)
dist <- dist_degenerate(x = 1:5)
dist
#> <distribution[5]>
#> [1] 1 2 3 4 5
mean(dist)
#> [1] 1 2 3 4 5
variance(dist)
#> [1] 0 0 0 0 0
skewness(dist)
#> [1] NA NA NA NA NA
kurtosis(dist)
#> [1] NA NA NA NA NA
generate(dist, 10)
#> [[1]]
#> [1] 1 1 1 1 1 1 1 1 1 1
#>
#> [[2]]
#> [1] 2 2 2 2 2 2 2 2 2 2
#>
#> [[3]]
#> [1] 3 3 3 3 3 3 3 3 3 3
#>
#> [[4]]
#> [1] 4 4 4 4 4 4 4 4 4 4
#>
#> [[5]]
#> [1] 5 5 5 5 5 5 5 5 5 5
#>
density(dist, 2)
#> [1] 0 1 0 0 0
density(dist, 2, log = TRUE)
#> [1] -Inf 0 -Inf -Inf -Inf
cdf(dist, 4)
#> [1] 1 1 1 1 0
quantile(dist, 0.7)
#> [1] 1 2 3 4 5