Chi-square distributions show up often in frequentist settings as the sampling distribution of test statistics, especially in maximum likelihood estimation settings.
dist_chisq(df, ncp = 0)
We recommend reading this documentation on https://pkg.mitchelloharawild.com/distributional/, where the math will render nicely.
In the following, let \(X\) be a \(\chi^2\) random variable with
df
= \(k\).
Support: \(R^+\), the set of positive real numbers
Mean: \(k\)
Variance: \(2k\)
Probability density function (p.d.f):
$$ f(x) = \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-(x - \mu)^2 / 2 \sigma^2} $$
Cumulative distribution function (c.d.f):
The cumulative distribution function has the form
$$ F(t) = \int_{-\infty}^t \frac{1}{\sqrt{2 \pi \sigma^2}} e^{-(x - \mu)^2 / 2 \sigma^2} dx $$
but this integral does not have a closed form solution and must be approximated numerically. The c.d.f. of a standard normal is sometimes called the "error function". The notation \(\Phi(t)\) also stands for the c.d.f. of a standard normal evaluated at \(t\). Z-tables list the value of \(\Phi(t)\) for various \(t\).
Moment generating function (m.g.f):
$$ E(e^{tX}) = e^{\mu t + \sigma^2 t^2 / 2} $$
dist <- dist_chisq(df = c(1,2,3,4,6,9))
dist
#> <distribution[6]>
#> [1] ᵪ²(1) ᵪ²(2) ᵪ²(3) ᵪ²(4) ᵪ²(6) ᵪ²(9)
mean(dist)
#> [1] 1 2 3 4 6 9
variance(dist)
#> [1] 2 4 6 8 12 18
skewness(dist)
#> [1] 2.828427 2.000000 1.632993 1.414214 1.154701 0.942809
kurtosis(dist)
#> [1] 12.000000 6.000000 4.000000 3.000000 2.000000 1.333333
generate(dist, 10)
#> [[1]]
#> [1] 4.047013e-01 6.205749e-02 4.435842e-02 3.789045e+00 3.414532e-03
#> [6] 2.775745e-01 3.014216e-08 4.084889e+00 1.347450e-01 4.137046e-03
#>
#> [[2]]
#> [1] 2.1765663 0.1728463 0.6521504 0.5678153 6.5400095 1.1090362 1.9458278
#> [8] 1.6737546 2.2380580 1.0848257
#>
#> [[3]]
#> [1] 0.2522179 2.2563275 0.5015687 2.4699871 0.9182044 3.6686716 0.1109399
#> [8] 1.0783473 3.7730830 9.9781000
#>
#> [[4]]
#> [1] 3.6676943 6.6866742 2.3762074 1.3110265 12.0680911 4.5565400
#> [7] 0.8961778 1.3136361 2.6503396 1.7013860
#>
#> [[5]]
#> [1] 0.7556929 1.4946454 3.1869203 19.5416985 4.9748662 4.6342390
#> [7] 3.9310179 12.7009085 14.1567026 7.4961617
#>
#> [[6]]
#> [1] 11.362065 6.814651 7.571392 10.412219 9.341929 9.533922 13.157604
#> [8] 4.677217 12.698442 9.926195
#>
density(dist, 2)
#> [1] 0.10377687 0.18393972 0.20755375 0.18393972 0.09196986 0.01581362
density(dist, 2, log = TRUE)
#> [1] -2.265512 -1.693147 -1.572365 -1.693147 -2.386294 -4.146884
cdf(dist, 4)
#> [1] 0.95449974 0.86466472 0.73853587 0.59399415 0.32332358 0.08858747
quantile(dist, 0.7)
#> [1] 1.074194 2.407946 3.664871 4.878433 7.231135 10.656372