dist <- dist_burr(shape1 = c(1,1,1,2,3,0.5), shape2 = c(1,2,3,1,1,2))
dist
#> <distribution[6]>
#> [1] Burr12(1, 1, 1) Burr12(1, 2, 1) Burr12(1, 3, 1) Burr12(2, 1, 1)
#> [5] Burr12(3, 1, 1) Burr12(0.5, 2, 1)
mean(dist)
#> [1] Inf 1.570796 1.209200 1.000000 0.500000 Inf
variance(dist)
#> [1] NaN Inf 0.9562355 Inf 0.7500000 NaN
support(dist)
#> <support_region[6]>
#> [1] [0,Inf) (0,Inf) (0,Inf) [0,Inf) [0,Inf) (0,Inf)
generate(dist, 10)
#> [[1]]
#> [1] 0.6953820 0.3172482 0.1960645 0.3109262 1.3965302 6.2424490
#> [7] 11.3693546 0.5244306 0.6611189 0.5220797
#>
#> [[2]]
#> [1] 1.4270902 0.1447616 0.6310605 0.3820480 0.1303857 1.8908569 0.7105088
#> [8] 1.2517875 4.5507249 0.7880165
#>
#> [[3]]
#> [1] 0.8754316 1.1338995 0.5485422 0.9766912 0.2765234 3.8657375 0.7856267
#> [8] 1.1919504 0.4469956 0.7802311
#>
#> [[4]]
#> [1] 0.22613813 0.15007801 0.35726677 1.04427563 0.40180149 0.54808338
#> [7] 0.17286512 0.25226635 0.58828240 0.02089587
#>
#> [[5]]
#> [1] 0.49603562 1.71078703 0.20174431 0.66179354 0.99545397 0.02150891
#> [7] 0.07664562 0.09673076 0.23369863 0.22289518
#>
#> [[6]]
#> [1] 10.3765735 2.3728921 5.7152576 1.0468940 1.0924432 0.3416535
#> [7] 4.9972601 0.2565234 2.3819379 1.1680588
#>
density(dist, 2)
#> [1] 0.11111111 0.16000000 0.14814815 0.07407407 0.03703704 0.17888544
density(dist, 2, log = TRUE)
#> [1] -2.197225 -1.832581 -1.909543 -2.602690 -3.295837 -1.721010
cdf(dist, 4)
#> [1] 0.8000000 0.9411765 0.9846154 0.9600000 0.9920000 0.7574644
quantile(dist, 0.7)
#> [1] 2.3333333 1.5275252 1.3263524 0.8257419 0.4938016 3.1797973